中华急危重症护理杂志 ›› 2025, Vol. 6 ›› Issue (9): 1144-1148.doi: 10.3761/j.issn.2096-7446.2025.09.021
陈燕琴(), 范丽君, 章蒙怜, 张婉, 李彩月, 赵华(
)
收稿日期:
2025-01-15
出版日期:
2025-09-10
发布日期:
2025-09-02
通讯作者:
赵华
E-mail:323629@zju.edu.cn;2503125@zju.edu.cn
作者简介:
陈燕琴:女,本科,副主任护师,E-mail:323629@zju.edu.cn
基金资助:
CHEN Yanqin(), FAN Lijun, ZHANG Menglian, ZHANG Wan, LI Caiyue, ZHAO Hua(
)
Received:
2025-01-15
Online:
2025-09-10
Published:
2025-09-02
Contact:
ZHAO Hua
E-mail:323629@zju.edu.cn;2503125@zju.edu.cn
摘要:
早期神经功能恶化是急性缺血性脑卒中病情进展的表现,危险因素众多,严重影响患者预后。该文综述了急性缺血性脑卒中患者非再灌注治疗与再灌注治疗后发生早期神经功能恶化的风险预测模型,对模型的构建方法、基本情况、预测性能和预测因子等内容进行总结、分析和比较,以期为急性缺血性脑卒中患者早期神经功能恶化风险预测模型的构建和应用提供借鉴。
陈燕琴, 范丽君, 章蒙怜, 张婉, 李彩月, 赵华. 急性缺血性脑卒中患者早期神经功能恶化风险预测模型的研究进展[J]. 中华急危重症护理杂志, 2025, 6(9): 1144-1148.
CHEN Yanqin, FAN Lijun, ZHANG Menglian, ZHANG Wan, LI Caiyue, ZHAO Hua. Research progress on risk prediction models for early neurological deterioration in patients with acute ischemic stroke[J]. Chinese Journal of Emergency and Critical Care Nursing, 2025, 6(9): 1144-1148.
[1] | 《中国脑卒中防治报告》编写组, 王陇德. 《中国脑卒中防治报告2021》概要[J]. 中国脑血管病杂志, 2023, 20(11):783-792,封3. |
China Stroke Prevention and Treatment Writing Group, Wang LD. Brief report on stroke prevention and treatment in China,2021[J]. Chin J Cerebrovasc Dis, 2023, 20(11):783-792,cover 3. | |
[2] |
Irvine HJ, Battey TW, Ostwaldt AC, et al. Early neurological stability predicts adverse outcome after acute ischemic stroke[J]. Int J Stroke, 2016, 11(8):882-889.
doi: 10.1177/1747493016654484 pmid: 27334760 |
[3] | Tian T, Wang LJ, Xu JL, et al. Prediction of early neurological deterioration in acute ischemic stroke patients treated with intravenous thrombolysis[J]. J Cereb Blood Flow Metab, 2023, 43(12):2049-2059. |
[4] |
Seners P, Ben Hassen W, Lapergue B, et al. Prediction of early neurological deterioration in individuals with minor stroke and large vessel occlusion intended for intravenous thrombolysis alone[J]. JAMA Neurol, 2021, 78(3):321-328.
doi: 10.1001/jamaneurol.2020.4557 pmid: 33427887 |
[5] | Kwan J, Hand P. Early neurological deterioration in acute stroke:clinical characteristics and impact on outcome[J]. QJM, 2006, 99(9):625-633. |
[6] | Grant SW, Collins GS, Nashef SAM. Statistical Primer:develop-ing and validating a risk prediction model[J]. Eur J Cardiotho-rac Surg, 2018, 54(2):203-208. |
[7] | Yamamoto H, Bogousslavsky J, van Melle G. Different predictors of neurological worsening in different causes of stroke[J]. Arch Neurol, 1998, 55(4):481-486. |
[8] | Birschel P, Ellul J, Barer D. Progressing stroke:towards an in-ternationally agreed definition[J]. Cerebrovasc Dis, 2004, 17(2/3):242-252. |
[9] | Siegler JE, Boehme AK, Kumar AD, et al. What change in the national institutes of health stroke scale should define neuro-logic deterioration in acute ischemic stroke?[J]. J Stroke Cere-brovasc Dis, 2013, 22(5):675-682. |
[10] | Miyamoto N, Tanaka Y, Ueno Y, et al. Demographic,clinical,and radiologic predictors of neurologic deterioration in patients with acute ischemic stroke[J]. J Stroke Cerebrovasc Dis, 2013, 22(3):205-210. |
[11] | Seners P, Turc G, Oppenheim C, et al. Incidence,causes and pre-dictors of neurological deterioration occurring within 24 h following acute ischaemic stroke:a systematic review with pathophysiological implications[J]. J Neurol Neurosurg Psy-chiatry, 2015, 86(1):87-94. |
[12] | Chung JW, Kim N, Kang J, et al. Blood pressure variability and the development of early neurological deterioration foll-owing acute ischemic stroke[J]. J Hypertens, 2015, 33(10):2099-2106. |
[13] | Stone JA, Willey JZ, Keyrouz S, et al. Therapies for hemorr-hagic transformation in acute ischemic stroke[J]. Curr Treat Op-tions Neurol, 2017, 19(1):1. |
[14] | Lee SJ, Hong JM, Lee SE, et al. Association of fibrinogen level with early neurological deterioration among acute ischemic stroke patients with diabetes[J]. BMC Neurol, 2017, 17(1):101. |
[15] | 梁玉婵, 韩小妍, 李素娟, 等. 非再灌注的轻型卒中早期神经功能恶化预测[J]. 中风与神经疾病杂志, 2022, 39(8):713-718. |
Liang YC, Han XY, Li SJ, et al. Predictive model for early neurological deterioration in minor ischemic stroke without reperfusion therapy[J]. J Apoplexy Nerv Dis, 2022, 39(8):713-718. | |
[16] | 毛永佳, 罗鹏, 毛诗贤, 等. 急性缺血性脑卒中早期神经功能恶化预测模型构建及评价[J]. 现代预防医学, 2024, 51(1):166-172. |
Mao YJ, Luo P, Mao SX, et al. Construction and evaluation of a model for predicting the deterioration of neurological function in the early stage of acute ischemic stroke[J]. Mod Prev Med, 2024, 51(1):166-172. | |
[17] | 肖静怡, 谢小华, 潘璐, 等. 急性缺血性脑卒中早期神经功能恶化风险预测模型的构建[J]. 护理研究, 2020, 34(19):3408-3412. |
Xiao JY, Xie XH, Pan L, et al. Development of risk prediction model for early neurological deterioration in acute ischemic stroke patients[J]. Chin Nurs Res, 2020, 34(19):3408-3412. | |
[18] | 林斯革, 欧小凡. 急性缺血性脑卒中患者早期神经功能恶化影响因素分析及预测模型建立[J]. 解放军预防医学杂志, 2020, 38(10):129-132. |
Lin SG, Ou XF. Analysis of influencing factors of early neu-rological deterioration in patients with acute ischemic stroke and establishment of a predictive model[J]. J Prev Med Chin PLA, 2020, 38(10):129-132. | |
[19] | 肖静怡, 谢小华, 王亚萍, 等. 基于IScore评分的早期神经功能恶化预测模型的构建与评价[J]. 护理学杂志, 2020, 35(17):32-35. |
Xiao JY, Xie XH, Wang YP, et al. Development and evaluation of IScore-based prediction model for early neurological deterioration[J]. J Nurs Sci, 2020, 35(17):32-35. | |
[20] | 姚富远. 非溶栓急性缺血性卒中患者早期神经功能恶化的危险因素及预测模型研究[D]. 广州: 汕头大学医学院, 2023. |
Yao FY. Risk factors and predictive model research for early neurological deterioration in non-thrombolytic acute ischemic stroke patients[D]. Guangzhou: Shantou University Medical Col-lege, 2023. | |
[21] | 汪云云. 急性缺血性脑卒中早期神经功能恶化影响因素与预警模型构建[D]. 合肥: 安徽医科大学, 2019. |
Wang YY. Influencing factors and early warning model con-struction for early neurological deterioration in acute ischemic stroke[D]. Hefei: Anhui Medical University, 2019. | |
[22] | Gong P, Zhang X, Gong Y, et al. A novel nomogram to predict early neurological deterioration in patients with acute is-chaemic stroke[J]. Eur J Neurol, 2020, 27(10):1996-2005. |
[23] | Bugnicourt JM, Roussel B, Garcia PY, et al. Aspirin non-res-ponder status and early neurological deterioration:a prospe-ctive study[J]. Clin Neurol Neurosurg, 2011, 113(3):196-201. |
[24] |
中华护理学会内科专业委员会, 首都医科大学宣武医院. 急性缺血性脑卒中静脉溶栓护理指南[J]. 中华护理杂志, 2023, 58(1):10-15.
doi: 10.3761/j.issn.0254-1769.2023.01.001 |
Internal Medicine Committee of Chinese Nursing Association,Xuanwu Hospital of Capital Medical University. Guidelines for nursing care of intravenous thrombolysis in acute ischemic stroke[J]. Chin J Nurs, 2023, 58(1):10-15.
doi: 10.3761/j.issn.0254-1769.2023.01.001 |
|
[25] | Zhou J, Gao Y, Ma QL. Safety and efficacy of tirofiban in acute ischemic stroke patients not receiving endovascular treat-ment:a systematic review and meta-analysis[J]. Eur Rev Med Pharmacol Sci, 2020, 24(3):1492-1503. |
[26] | 袁长红, 吴晓宇, 陈长春, 等. 急性脑梗死静脉溶栓后早期神经功能恶化的危险因素及预测模型分析[J]. 临床内科杂志, 2021, 38(6):396-398. |
Yuan CH, Wu XY, Chen CC, et al. Risk factors and predictive model analysis of early neurological deterioration after intra-venous thrombolysis in acute cerebral infarction[J]. J Clin Intern Med, 2021, 38(6):396-398. | |
[27] | 李彬. 急性脑梗死阿替普酶溶栓后早期神经功能恶化预测模型的构建与验证[J]. 安徽医药, 2022, 26(8):1627-1632. |
Li B. Construction and verification of early neurological dete-rioration prediction model after alteplase thrombolysis in cerebral infarction[J]. Anhui Med Pharm J, 2022, 26(8):1627-1632. | |
[28] | 边丽, 张秀梅, 李妍, 等. 急性脑梗塞患者溶栓后END发生风险预测模型的构建及急救优化方案的预防效果[J]. 中国实验诊断学, 2023, 27(6):631-637. |
Bian L, Zhang XM, Li Y, et al. Construction of risk prediction model of END after thrombolysis in patients with acute cerebral infarction prevention effect of first aid optimization scheme[J]. Chin J Lab Diagn, 2023, 27(6):631-637. | |
[29] | 胡岩芳, 赵杨, 李喜朋. 高龄轻型脑卒中患者溶栓治疗后发生早期神经功能恶化的危险因素及列线图风险预测模型[J]. 广西医学, 2021, 43(9):1069-1073. |
Hu YF, Zhao Y, Li XP. Occurrence of early neurological deterioration after thrombolysis therapy in elderly patients with mild stroke:risk factors and nomogram model of risk prediction[J]. Guangxi Med J, 2021, 43(9):1069-1073. | |
[30] | Yang H, Lv Z, Wang WX, et al. Machine learning models for predicting early neurological deterioration and risk classi-fication of acute ischemic stroke[J]. Clin Appl Thromb Hemost, 2023, 29:10760296231221738. |
[31] | Wang M, Liu YL. Construction of a prediction model for risk of early neurological deterioration following intravenous throm-bolysis in patients with acute ischemic stroke[J]. Technol Health Care, 31(6):2213-2223. |
[32] | 吕喆, 杨欢, 王耀辉, 等. 基于机器学习的急性缺血性脑卒中静脉溶栓后早期神经功能恶化预测模型的建立与评价[J]. 中华危重病急救医学, 2023, 35(9):945-950. |
Lü Z, Yang H, Wang YH, et al. Establishment and evaluation of a predictive model for early neurological deterioration after intravenous thrombolysis in acute ischemic stroke based on machine learning[J]. Chin Crit Care Med, 2023, 35(9):945-950. | |
[33] | 徐守权, 唐国文, 黄舞标, 等. BP神经网络、随机森林和决策树预测急性脑梗死患者静脉溶栓后发生早期神经功能恶化的效能比较[J]. 实用心脑肺血管病杂志, 2023, 31(2):16-21. |
Xu SQ, Tang GW, Huang WB, et al. Comparison of the efficacy of BP neural network,random forest and decision tree in predicting early neurological deterioration after intra-venous thrombolysis in patients with acute cerebral infarction[J]. Pract J Card Cereb Pneumal Vasc Dis, 2023, 31(2):16-21. | |
[34] | 刘艳平, 康玲伶, 崔会, 等. 缺血性脑卒中患者静脉溶栓术后早期神经功能恶化危险因素的Meta分析[J]. 河北医学, 2022, 28(12):2100-2104. |
Liu YP, Kang LL, Cui H, et al. Risk factors of early neuro-logical deterioration of patients with ischemic stroke under-going intravenous thrombolysis:a meta analysis[J]. Hebei Med, 2022, 28(12):2100-2104. | |
[35] | Yang TT, Hu YX, Pan XD, et al. Interpretable machine learning model predicting early neurological deterioration in ischemic stroke patients treated with mechanical thrombectomy:a retro-spective study[J]. Brain Sci, 2023, 13(4):557. |
[1] | 叶洪敏, 甘秀妮, 高燕, 张欢, 周雯, 李冬雪. 脑出血患者静脉血栓栓塞症风险预测模型的构建及验证研究[J]. 中华急危重症护理杂志, 2025, 6(9): 1042-1049. |
[2] | 祖路比亚·阿布都, 李婷, 孙丽冰, 陈慧娟. 多发伤患者深静脉血栓形成风险预测模型的构建及验证研究[J]. 中华急危重症护理杂志, 2025, 6(9): 1067-1073. |
[3] | 刘畅, 王忠霞, 瞿江月, 刘旭东, 蒙莉萍, 张华. 中青年患者经皮冠状动脉介入术后恐惧疾病进展应对策略的研究进展[J]. 中华急危重症护理杂志, 2025, 6(8): 1021-1024. |
[4] | 陈盈, 唐佳迎, 郭芝廷, 封秀琴. ICU患者家属风险沟通和治疗决策有效性综合评估量表的汉化及信效度检验[J]. 中华急危重症护理杂志, 2025, 6(8): 975-981. |
[5] | 安晓, 江淑敏. ICU患者亚谵妄综合征风险预测模型的系统评价[J]. 中华急危重症护理杂志, 2025, 6(7): 866-871. |
[6] | 盛晓萱, 黄素芳. 主动脉夹层术后患者重返工作岗位影响因素及干预措施的研究进展[J]. 中华急危重症护理杂志, 2025, 6(6): 765-768. |
[7] | 张建, 王晓萍, 史绪生, 薛雪, 盖玉彪, 高祀龙, 郭小靖, 魏丽丽. ICU患者急性皮肤衰竭风险评估工具的构建及验证研究[J]. 中华急危重症护理杂志, 2025, 6(5): 517-523. |
[8] | 施卸丽, 祝柯鑫, 胡小黎, 王芳. 应用机器学习法构建及验证新生儿压力性损伤风险预测模型的研究[J]. 中华急危重症护理杂志, 2025, 6(5): 536-542. |
[9] | 洪柳雨, 陈香萍, 劳月文, 陈倩倩, 宫晓艳. 儿童慢性危重症疾病进程的影响因素及干预策略研究进展[J]. 中华急危重症护理杂志, 2025, 6(5): 566-569. |
[10] | 黄慧, 纪超娜, 陈丽婵, 陈燕宏, 陈惜遂. ICU成人患者中心静脉导管相关皮肤损伤风险预测模型的构建及验证[J]. 中华急危重症护理杂志, 2025, 6(4): 389-395. |
[11] | 苏怡超, 胡小黎, 李秋芳. 早产儿生命早期肠道微生态调整策略的研究进展及展望[J]. 中华急危重症护理杂志, 2025, 6(3): 372-375. |
[12] | 欧阳兰欣, 刘迪, 陈雯. 急诊科识别及救治老年人受虐致伤的研究进展[J]. 中华急危重症护理杂志, 2025, 6(3): 376-379. |
[13] | 翁成杰, 潘向滢, 王金宁, 金佳家, 赵雪红. ICU警报管理数字化与智能化的研究进展[J]. 中华急危重症护理杂志, 2025, 6(3): 380-384. |
[14] | 童青青, 冯永贵, 高绘明, 李涛, 周满红, 胡汝均. 移动应用程序在院外心搏骤停第一目击者急救中的应用进展[J]. 中华急危重症护理杂志, 2025, 6(2): 168-172. |
[15] | 何晓娣, 孔敏坚, 王伊钶, 陈媛儿, 兰美娟. 营养评估与管理在左心室辅助装置植入患者治疗中应用的研究进展[J]. 中华急危重症护理杂志, 2025, 6(2): 247-251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||