[1] |
Fossat G, Baudin F, Courtes L, et al. Effect of in-bed leg cycling and electrical stimulation of the quadriceps on global muscle strength in critically ill adults:a randomized clinical trial[J]. JAMA, 2018, 320(4):368-378.
|
[2] |
Schweickert WD, Jablonski J, Bayes B, et al. Structured mobilization for critically ill patients:a pragmatic cluster-randomized trial[J]. Am J Respir Crit Care Med, 2023, 208(1):49-58.
|
[3] |
Falvey JR, Cohen AB, O’Leary JR, et al. Association of social isolation with disability burden and 1-year mortality among older adults with critical illness[J]. JAMA Intern Med, 2021, 181(11):1433-1439.
doi: 10.1001/jamainternmed.2021.5022
pmid: 34491282
|
[4] |
Tripathi D, Hajra K, Mulukutla A, et al. Artificial intelligence in biomedical engineering and its influence on healthcare structure:current and future prospects[J]. Bioengineering, 2025, 12(2):163.
|
[5] |
Hsieh YH, Yuan SM. Artificial intelligence and deep learning in sensors and applications:2nd edition[J]. Sensors, 2025, 25(4):1144.
|
[6] |
Karpiel I, Mysiński M, Olesz K, et al. Overview of respiratory sensor solutions to support patient diagnosis and monitoring[J]. Sensors, 2025, 25(4):1078.
|
[7] |
Daniel AD, Asheku AN, Stephen Y, et al. Assessment of knowledge,practice,perception,and expectations of artificial intelligence in medical care among staff of a tertiary hospital[J]. Ethiop J Health Sci, 2024, 34(4):313-320.
|
[8] |
Klein J, Wood J, Jaycox JR, et al. Distinguishing features of long COVID identified through immune profiling[J]. Nature, 2023, 623(7985):139-148.
|
[9] |
Yaron-Barir TM, Joughin BA, Huntsman EM, et al. The intrinsic substrate specificity of the human tyrosine kinome[J]. Nature, 2024, 629(8014):1174-1181.
|
[10] |
Ricotti V, Kadirvelu B, Selby V, et al. Wearable full-body motion tracking of activities of daily living predicts disease trajectory in Duchenne muscular dystrophy[J]. Nat Med, 2023, 29(1):95-103.
doi: 10.1038/s41591-022-02045-1
pmid: 36658421
|
[11] |
Liu SQ, Fawden T, Zhu R, et al. A data-efficient and easy-to-use lip language interface based on wearable motion capture and speech movement reconstruction[J]. Sci Adv, 2024, 10(26):eado9576.
|
[12] |
Cisek KK, Nguyen TNQ, Garcia-Rudolph A, et al. Predictors of social risk for post-ischemic stroke reintegration[J]. Sci Rep, 2024, 14(1):10110.
doi: 10.1038/s41598-024-60507-7
pmid: 38698076
|
[13] |
Wang XY, Fu Y, Ye B, et al. Technology-based compensation assessment and detection of upper extremity activities of stroke survivors:systematic review[J]. J Med Internet Res, 2022, 24(6):e34307.
|
[14] |
Echefu G, Batalik L, Lukan A, et al. The digital revolution in medicine:applications in cardio-oncology[J]. Curr Treat Options Cardiovasc Med, 2024, 27(1):2.
|
[15] |
C Areias A, G Moulder R, Molinos M, et al. Predicting pain response to a remote musculoskeletal care program for low back pain management:development of a prediction tool[J]. JMIR Med Inform, 2024, 12:e64806.
|
[16] |
Gehlot V, King D, Schaffer J, et al. Healthcare optimization and augmented intelligence by coupling simulation & modeling:an ideal AI/ML partnership for a better clinical informatics[J]. AMIA Annu Symp Proc, 2023, 2022:477-484.
|
[17] |
王文巧, 赵红梅. 重症监护病房康复智慧化平台[J]. 中华结核和呼吸杂志, 2023, 46(11):1051-1054
|
|
Wang WQ, Zhao HM. Intelligent rehabilitation platform in intensive care unit[J]. Chin J Tubere Respir Dis, 2023, 46(11):1051-1054.
|
[18] |
Rodgers H, Bosomworth H, Krebs HI, et al. Robot assisted training for the upper limb after stroke(RATULS):a multicentre randomised controlled trial[J]. Lancet, 2019, 394(10192):51-62.
doi: S0140-6736(19)31055-4
pmid: 31128926
|
[19] |
Proietti T, O’Neill C, Gerez L, et al. Restoring arm function with a soft robotic wearable for individuals with amyotrophic lateral sclerosis[J]. Sci Transl Med, 2023, 15(681):eadd1504.
|
[20] |
Ishmael MK, Archangeli D, Lenzi T. Powered hip exoskeleton improves walking economy in individuals with above-knee amputation[J]. Nat Med, 2021, 27(10):1783-1788.
doi: 10.1038/s41591-021-01515-2
pmid: 34635852
|
[21] |
Wang H, Ding QL, Luo YB, et al. High-performance hydrogel sensors enabled multimodal and accurate human-machine interaction system for active rehabilitation[J]. Adv Mater, 2024, 36(11):e2309868.
|
[22] |
Yang HT, Xiao X, Li ZP, et al. Wireless Ti3C2Tx MXene strain sensor with ultrahigh sensitivity and designated working windows for soft exoskeletons[J]. ACS Nano, 2020, 14(9):11860-11875.
|
[23] |
Acosta JN, Falcone GJ, Rajpurkar P, et al. Multimodal biomedical AI[J]. Nat Med, 2022, 28(9):1773-1784.
doi: 10.1038/s41591-022-01981-2
pmid: 36109635
|
[24] |
Winchester LM, Harshfield EL, Shi L, et al. Artificial intelligence for biomarker discovery in Alzheimer’s disease and dementia[J]. Alzheimers Dement, 2023, 19(12):5860-5871.
doi: 10.1002/alz.13390
pmid: 37654029
|
[25] |
Tran KA, Kondrashova O, Bradley A, et al. Deep learning in cancer diagnosis,prognosis and treatment selection[J]. Genome Med, 2021, 13(1):152.
|
[26] |
Haque A, Milstein A, Li FF. Illuminating the dark spaces of healthcare with ambient intelligence[J]. Nature, 2020, 585(7824):193-202.
|
[27] |
Sun J, Yang RF, Li QS, et al. Living synthelectronics:a new era for bioelectronics powered by synthetic biology[J]. Adv Mater, 2024, 36(25):e2400110.
|
[28] |
Bera K, Braman N, Gupta A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology[J]. Nat Rev Clin Oncol, 2022, 19(2):132-146.
|
[29] |
Ashammakhi N, Ahadian S, Darabi MA, et al. Minimally invasive and regenerative therapeutics[J]. Adv Mater, 2019, 31(1):e1804041.
|