| [1] |
国家卫生健康委办公厅. 血液净化标准操作规程(2021版)[S/OL].(2021-11-08)[2025-03-01]. http://www.nhc.gov.cn/yzygj/s7659/202111/6e25-b8260b214c55886d6f0512-c1e53f.shtml.
|
|
General Office of the National Health Commission.Blood purification standard operating procedures(2021 edition)[S/OL].(2021-11-08)[2025-03-01]. http://www.nhc.gov.cn/yzygj/s7659/202111/6e25-b8260b214c55886d6f0512-c1e53f.shtml.
|
| [2] |
王海鸥, 李国宏. 重症监护室连续性肾脏替代治疗患者早期活动方案的构建[J]. 中华急危重症护理杂志, 2022, 3(4):312-319.
|
|
Wang HO, Li GH. The construction of an early mobilization program for patients undergoing continuous renal replacement therapy in intensive care units[J]. Chin J Emerg Crit Care Nurs, 2022, 3(4):312-319.
|
| [3] |
Zhuang CR, Hu RM, Li K, et al. Machine learning prediction models for mortality risk in sepsis-associated acute kidney injury:evaluating early versus late CRRT initiation[J]. Front Med, 2025,11:1483710.
|
| [4] |
Tsujimoto Y, Miki S, Shimada H, et al. Non-pharmacological in-terventions for preventing clotting of extracorporeal circuits during continuous renal replacement therapy[J]. Cochrane Data-base Syst Rev, 2021, 9(9):CD013330.
|
| [5] |
Zhang W, Bai M, Zhang L, et al. Development and external va-lidation of a model for predicting sufficient filter lifespan in anticoagulation-free continuous renal replacement therapy pa-tients[J]. Blood Purif, 2022, 51(8):668-678.
doi: 10.1159/000519409
|
| [6] |
Tsujimoto Y, Fujii T. How to prolong filter life during conti-nuous renal replacement therapy?[J]. Crit Care, 2022, 26(1):62.
doi: 10.1186/s13054-022-03910-8
|
| [7] |
中华医学会肾脏病学分会专家组. 连续性肾脏替代治疗的抗凝管理指南[J]. 中华肾脏病杂志, 2022(11):1016-1024.
|
|
Experts Group of Nephrology Branch of Chinese Medical As-sociation. Guidelines for the anticoagulant management of con-tinuous renal replacement therapy[J]. Chin J Nephrol, 2022(11):1016-1024.
|
| [8] |
吴敏, 汪君, 孙海红. 将前馈理论应用于结直肠癌根治术患者手术室护理中的可行性分析[J]. 国际护理学杂志, 2024, 43(7):1222-1225.
|
|
Wu M, Wang J, Sun HH. Feasibility analysis of applying feed-forward theory to operating room care of patients undergoing radical colorectal cancer surgery[J]. Int J Nurs, 2024, 43(7):1222-1225.
|
| [9] |
Moons KGM, de Groot JAH, Bouwmeester W, et al. Critical ap-praisal and data extraction for systematic reviews of prediction modelling studies:the CHARMS checklist[J]. PLoS Med, 2014, 11(10):e1001744.
doi: 10.1371/journal.pmed.1001744
|
| [10] |
Wolff RF, Moons KGM, Riley RD, et al. PROBAST:a tool to assess the risk of bias and applicability of prediction model studies[J]. Ann Intern Med, 2019, 170(1):51-58.
doi: 10.7326/M18-1376
|
| [11] |
Fu X, Liang XL, Song L, et al. Building and validation of a prognostic model for predicting extracorporeal circuit clotting in patients with continuous renal replacement therapy[J]. Int Urol Nephrol, 2014, 46(4):801-807.
doi: 10.1007/s11255-014-0682-5
pmid: 24638211
|
| [12] |
何朝生, 符霞, 梁馨苓, 等. 连续性血液净化治疗体外循环堵管风险积分模型的构建[J]. 南方医科大学学报, 2015, 35(2):272-275.
|
|
He CS, Fu X, Liang XL, et al. A prognostic model for pre-dicting extracorporeal circuit clotting in patients with conti-nuous renal replacement therapy[J]. J South Med Univ, 2015, 35(2):272-275.
|
| [13] |
Kakajiwala A, Jemielita T, Hughes JZ, et al. Membrane pressu-res predict clotting of pediatric continuous renal replacement therapy circuits[J]. Pediatr Nephrol, 2017, 32(7):1251-1261.
doi: 10.1007/s00467-017-3601-z
pmid: 28247082
|
| [14] |
王海波, 李克鹏, 徐丽娟, 等. 重症合并急性肾损伤患者持续静脉-静脉血液透析滤过治疗时滤器凝血预测模型的建立与评价[J]. 潍坊医学院学报, 2019, 41(1):52-54,74.
|
|
Wang HB, Li KP, Xu LJ, et al. Establishment of regression model of clotting of dialysers during continuous haemodiafiltration in critically ill patients with acute kidney injury for prediction and evaluating its efficacy[J]. Acta Acad Med Wei-fang, 2019, 41(1):52-54,74.
|
| [15] |
常蓉, 李玲玲. 连续性肾脏替代治疗患者发生管路凝血预测模型的构建[J]. 临床肾脏病杂志, 2022, 22(12):1016-1022.
|
|
Chang R, Li LL. Construction of a predictive model for in-circuit coagulation in patients on continuous renal replace-ment therapy[J]. J Clin Nephrol, 2022, 22(12):1016-1022.
|
| [16] |
胡璐璐, 牛洪艳, 韩小云, 等. 连续性肾脏替代治疗体外循环装置凝血风险预测模型的构建与验证[J]. 中华护理杂志, 2023, 58(15):1845-1851.
doi: 10.3761/j.issn.0254-1769.2023.15.009
|
|
Hu LL, Niu HY, Han XY, et al. The development and appli-cation of a risk prediction model for extracorporeal circuit clotting during continuous renal replacement therapy[J]. Chin J Nurs, 2023, 58(15):1845-1851.
|
| [17] |
Yang EM, Wang QH, Guo J, et al. Development and external validation of a prediction model for the premature circuit clotting of continuous renal replacement therapy in critically ill patients[J]. Intensive Crit Care Nurs, 2024,84:103703.
|
| [18] |
Liu L, Liu DS, He T, et al. Coagulation risk predicting in an-ticoagulant-free continuous renal replacement therapy[J]. Blood Purif, 2024, 53(11/12):916-927.
|
| [19] |
李珂, 杨振楠. PICC相关血流感染风险预测模型的研究进展[J]. 中华护理杂志, 2022, 57(5):551-554.
doi: 10.3761/j.issn.0254-1769.2022.05.006
|
|
Li K, Yang ZN. Research progress of PICC catheter related blood stream infection risk prediction model[J]. Chin J Nurs, 2022, 57(5):551-554.
doi: 10.3761/j.issn.0254-1769.2022.05.006
|
| [20] |
共识专家组. 抗凝技术在危重症肾脏替代治疗应用的中国专家共识(2023年版)[J]. 中华肾脏病杂志, 2023, 39(2):155-164.
doi: 10.3760/cma.j.cn441217-20220809-00815
|
|
Expert Consensus Working Group. Chinese expert consensus on the application of anticoagulant technology in renal repla-cement therapy for critical patients(2023)[J]. Chin J Neph-rol, 2023, 39(2):155-164.
|
| [21] |
Guo LT, Hu YD, Zeng QJ, et al. Factors affecting continuous renal replacement therapy duration in critically ill patients:a retrospective study[J]. Ther Apher Dial, 2023, 27(5):898-908.
doi: 10.1111/tap.v27.5
|
| [22] |
陈仲斌, 潘灵爱, 吕静, 等. 局部枸橼酸抗凝的持续性肾脏替代治疗管路寿命影响因素研究进展[J]. 护理研究, 2022, 36(24): 4447-4450.
|
|
Chen ZB, Pan LA, Lü J, et al. Research progress on influenc-ing factors of circuit life span in continuous renal replace-ment therapy with regional citrate anticoagulation[J]. Chin Nurs Res, 2022, 36(24):4447-4450.
|
| [23] |
Hang C, Liu LJ, Huang ZY, et al. Optimal indicator for chang-ing the filter during the continuous renal replacement the-rapy in intensive care unit patients with acute kidney injury:a crossover randomized trial[J]. World J Emerg Med, 2022, 13(3):196-201.
doi: 10.5847/wjem.j.1920-8642.2022.046
|
| [24] |
Moons KGM, Wolff RF, Riley RD, et al. PROBAST:a tool to assess risk of bias and applicability of prediction model stu-dies:explanation and elaboration[J]. Ann Intern Med, 2019, 170(1):W1-W33.
|
| [25] |
Okita J, Nakata T, Uchida H, et al. Development and valida-tion of a machine learning model to predict time to renal replacement therapy in patients with chronic kidney disease[J]. BMC Nephrol, 2024, 25(1):101.
doi: 10.1186/s12882-024-03527-9
pmid: 38493099
|
| [26] |
Thadani S, Wu TC, Wu DTY, et al. Machine learning-based pre-diction model for ICU mortality after continuous renal repla-cement therapy initiation in children[J]. Crit Care Explor, 2024, 6(12):e1188.
doi: 10.1097/CCE.0000000000001188
pmid: 39688905
|