ISSN 2097-6046(网络)
ISSN 2096-7446(印刷)
CN 10-1655/R
主管:中国科学技术协会
主办:中华护理学会

中华急危重症护理杂志 ›› 2025, Vol. 6 ›› Issue (6): 671-675.doi: 10.3761/j.issn.2096-7446.2025.06.005

• 急危重症智慧护理创新与实践 • 上一篇    下一篇

人工气道阻力智慧预警系统的研发及应用研究

王伟钟(), 周尧英(), 刘伟董   

  1. 312000 绍兴市人民医院内科重症医学科(王伟钟),护理部(周尧英),外科重症医学科(刘伟董)
  • 收稿日期:2024-07-15 出版日期:2025-06-10 发布日期:2025-06-06
  • 通讯作者: 周尧英,E-mail:1275965033@qq.com
  • 作者简介:王伟钟:男,本科,副主任护师,副护士长,E-mail:906134210@qq.com
  • 基金资助:
    2023年浙江省医药卫生科技计划(2023KY356)

Development and application of intelligent warning system for artificial airway resistance

WANG Weizhong(), ZHOU Yaoying(), LIU Weidong   

  1. Department of Medical Intensive Care Unit,Shaoxing People’s Hospital,Shaoxing,312000,China
  • Received:2024-07-15 Online:2025-06-10 Published:2025-06-06

摘要: 目的 研发人工气道阻力智慧预警系统,早期发现机械通气患者的人工气道分泌物,探讨其在提高人工气道分泌物干预率、减少分泌物粘滞中的效果。 方法 2022年5月开始研发基于物联技术的人工气道阻力智慧预警系统,实现人工气道分泌物粘滞的评估-预警-质控全程闭环智慧管理。2023年3月—4月,在浙江省某三级甲等医院内科重症医学科、外科重症医学科中应用该系统。比较系统应用后(2023年3月—4月)与应用前(2022年3月—4月)机械通气患者的人工气道分泌物干预率、人工气道分泌物粘滞率。 结果 系统应用后,人工气道分泌物干预率由14.2%提升至25.8%,人工气道分泌物粘滞率由45.3%下降至24.5%,差异均有统计学意义(P<0.05)。结论 应用基于物联网技术的人工气道阻力智慧预警系统,可提高人工气道分泌物干预率,降低分泌物粘滞率。

关键词: 重症监护病房, 物联网, 人工气道, 分泌物, 气道阻力, 预警, 护理管理研究

Abstract:

Objective To develop artificial airway resistance intelligent warning system to detect the secretions early for patients with mechanical ventilation,and explore its effect in improving the intervention rate of secretions and reducing the viscosity of artificial airway secretions. Methods In May 2022,we started to develop an artificial airway resistance intelligent early warning system based on Internet of Things technology to achieve closed-loop intelligent management of artificial airway secretion viscosity. From March to April 2023,it was applied in the Department of Internal intensive Care Medicine and the Department of Surgical Intensive Care Medicine of a tertiary class A hospital in Zhejiang Province. The intervention rate of artificial airway secretion and the viscosity rate of artificial airway secretion in patients with mechanical ventilation after the application of the system(March to April 2023) and before the application(March to April 2022) were compared. Results After the system application,the intervention rate of artificial airway secretion increased from 14.2% to 25.8%,and the viscosity rate of artificial airway secretion decreased from 45.3% to 24.5%,with statistical significance(P<0.05). Conclusion The application of intelligent early warning system of artificial airway resistance based on Internet of Things technology can improve the intervention rate of artificial airway secretion and reduce the viscosity of secretion.

Key words: Intensive Care Units, Internet of Things, Artificial Airway, Secretion, Airway Resistance, Warning, Nursing Administration Research