ISSN 2097-6046(网络)
ISSN 2096-7446(印刷)
CN 10-1655/R
主管:中国科学技术协会
主办:中华护理学会

中华急危重症护理杂志 ›› 2025, Vol. 6 ›› Issue (7): 866-871.doi: 10.3761/j.issn.2096-7446.2025.07.018

• 证据综合研究 • 上一篇    下一篇

ICU患者亚谵妄综合征风险预测模型的系统评价

安晓(), 江淑敏()   

  1. 250014 济南市 山东第一医科大学第一附属医院护理部
  • 收稿日期:2024-09-02 出版日期:2025-07-10 发布日期:2025-07-04
  • 通讯作者: 江淑敏 E-mail:xiaooann96@163.com;aml145@sina.com
  • 作者简介:安晓:女,硕士,护师,E-mail:xiaooann96@163.com
  • 基金资助:
    山东省医药卫生科技发展计划(2017WSB04086);山东第一医科大学(山东省医学科学院)青年科学基金培育资助计划(202202-022)

Risk prediction models for subsyndromal delirium in ICU patients:a systematic review

AN Xiao(), JIANG Shumin()   

  • Received:2024-09-02 Online:2025-07-10 Published:2025-07-04
  • Contact: JIANG Shumin E-mail:xiaooann96@163.com;aml145@sina.com

摘要:

目的 系统检索和评价ICU患者亚谵妄综合征风险预测模型,为医护人员构建和选择科学有效的风险预测模型提供参考。 方法 检索PubMed、Embase、Web of Science、 Cochrane Library、CINAHL、中国知网、维普数据库、万方数据库和中国生物医学文献数据库中有关ICU患者亚谵妄综合征风险预测模型的研究,检索时限为建库至2024年7月19日,由2名研究者独立筛选文献、提取资料以及评价纳入文献的偏倚风险和适用性。 结果 共纳入8项ICU患者亚谵妄综合征风险预测模型研究,涉及8个模型,建立模型的受试者操作特征曲线下面积(area under the curve,AUC)为0.710~0.956。模型总体适用性较好,但偏倚风险较高,主要集中在数据分析领域。 结论 现有的ICU患者亚谵妄综合征风险预测模型整体性能良好,但偏倚风险高,未来可对现有模型进一步优化或开发更高质量的预测模型。

关键词: 重症监护室, 亚谵妄综合征, 预测模型, 循证护理学, 系统评价

Abstract:

Objective To systematically retrieve and evaluate the subsyndromal delirium (SSD) risk prediction models for ICU patients,aiming to provide reference for medical staff to construct and select scientifically effective risk prediction models. Methods The researches on SSD risk prediction models for ICU patients were retrieved in PubMed,Embase,Web of Science,Cochrane Library,CINAHL,China National Knowledge Infrastructure,VIP database,Wanfang database,and China Biomedical Literature Database,the retrieval time limit was from the establishement of database until July 19,2024. Two researchers independently screened literature,extracted data,and evaluated the bias risk and applicability of the included literature. Results A total of 8 studies on SSD risk prediction model for ICU patients were included,involving 8 models,with an area under the curve(AUC) of 0.710-0.956 for establishing the models. The overall applicability was good,but the risk of bias was high,mainly concentrated in the field of data analysis. Conclusion The existing ICU patient SSD risk prediction models have good overall performance,but have a high risk of bias. In the future,the existing models can be further optimized or higher quality prediction models can be developed.

Key words: Intensive Care Units, Subsyndromal Delirium, Forecasting Model, Evidence-Based Nursing, Systematic Review